

Evaluation of Additive Manufacturing for Composite Repairs

2 April 2024

Presented to: JCAMS Presented by: Emma Wuebker

UDRI Proprietary - R NAVAIR Public Release 2024-0160. Distribution Statement A – "Approved for public release; distribution is unlimited."

Introduction

- The purpose of this project is to explore the application of AM patches for lightly loaded composite repairs.
- Possible Benefits
 - Cut down on repair time
 - Reduce costs
 - Increased reliability
- Stratasys F900 machine using ULTEM 9085 CG Filament
- Leverage distributed manufacturing capability

Stratasys F900

For ULTEM 9085 Layer height 0.01in (0.254 mm)

Accuracy of +/- .089 mm or +/- .0015 mm per mm whichever is greater (+/- .0035 in. or +/-.0015 in. per in. whichever is greater

Testing Outline

- Testing
 - Fracture Toughness
 - Characterize material across process settings
 - Raster angle
 - Orientation
 - Determine suitability and best process settings for repair design
 - Double Lap Shear
 - Evaluation of bonding using EA9394 to thermoset epoxy substrate
 - Bonding optimization
 - Additional characterization of bond strength
 - Demonstration/Validation
 - Demonstrate designed repair on scrap component

Fracture Toughness Test Matrix

Build Direction		Fla	t (X)			On Edge (Y)			Upright (Z)			
Raster Angle	0/90	45/ -45	0/45/ 90	0/60/ -60	0/90	45/ -45	0/45/ 90	0/60/ -60	0/90	45/ -45	0/45 /90	0/60/ -60
Constants												
Infill				100%								
Raster Width				0.508 mm (0.02 in.)								
Contour Width				0.508 mm (0.02 in.)								
Airgap				0 mm (0 in.)								

ASTM Selection

- Based on literature reviews, ASTM 5045 was chosen. It is Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials.
- There are no ASTM AM focused test methods for Fracture Toughness.

$$B, a, (W-a) > 2.5 (K_Q/\sigma_y)^2$$
(1)

where:

UDRI Proprietar

 K_Q = the conditional or trial K_{Ic} value (see Section 9), and σ_y = the yield stress of the material for the temperature and loading rate of the test.

- Single End Bending versus Compact tension coupon types were allowed per the ASTM, but CT was chosen.
- We were not constrained by a specific stock material geometry.
- Based on selected dimension, the part was designed in SolidWorks.

To choose the dimensions, 0.55 > a/W > 0.45

a= 20 mm W= 40 mm B= 20 mm

a is the total crack length after pre cracking, before failure

- The goal was to compare build direction and raster angle to see what would produce the highest fracture toughness.
 - Upright(Z)
 - On Edge (Y)
 - Flat (X)
- Raster Angle
 - +45/-45 degrees
 - 0/90 degrees
 - Quasi composite 0/45/90
 - Quasi composite 0/60
- Test each combination 3 times for redundancy ______

1 Pa	rameters for '0/90'					×	
Ger	neral information		Inf	ill parameters			
	Group name	0/90		Infill style	Alternating rasters	-	
	Description			Raster width	0.0200	-	S
	Display color	Yellow	•	Alternate fill cell size	0.2000		S
	Toolpath material	Model	•	Permeable pattern cycle	8	*	
Cor	ntour parameters			Align rasters			rou
	Contour style	Single contour only	• Inf	ill angle controls			
	Contour width	0.0200	•	Start angle	0.0000	•	
	Interior contour width	0.0200	~	Delta angle	90.0000	•	
	Number of contours (total)	1 *	-	Layers between deltas	1		esc
	Number of interior contours	0 ~	" Sp	arse fill controls			ont
	Contour depth	0.0200		Include in part sparse fill			umb
Cor	Contour controls			Infill style	Alternating rasters	¥	umb
	Apply contour style to selecte	ed feature only	$\boxed{\checkmark}$	Add a contour around spa	arse		iter
\square	Link contours			Sparse raster width	0.0220	¥	aste
	Allow increased contour over	fill		Sparse raster air gap	0.0800		
	Outer contour location	Inside	-	Start angle	45.0000	¥	
Air	gaps between:			Delta angle	90.0000	¥	
	Adjacent rasters	0.0000	•	Alternate fill cell size	0.2000		
	Contours and rasters	0.0000	•	Permeable pattern cycle	8	¥	
	Contour and contour	0.0000 ~	v				
Op	en curves						
	Open curve width	0.0200	•				
	Open curve width	0.0200	?	, X			

Quasi 0/45/90 Flat(X) No crack, compliance coupon

NAVAIR Public Release 2024-0160. Distribution Statement A – "Approved for public release; distribution is unlimited."

Tension Coupons

Test Procedure

- 1. Pre-crack the FT coupons
- 2. Perform tension test on tension coupons
- 3. Get time to failure and max load
- 4. Determine yield stress via ASTM E399
- 5. Load the FT coupons at a rate such that crack extension occurs within ± 20% of the time to max load of the tension coupons
- 6. Perform compliance CT test, reach same load within ± 20% of time of tension coupons
- 7. If any coupons fell outside the time, they were invalidated
- 8. Perform calculations and numerical checks to confirm validity of data

Coupon Preparation

Test Procedure

- 1. Pre-crack the FT coupons
- 2. Perform tension test on tension coupons
- 3. Get time to failure and max load
- 4. Determine yield stress via ASTM E399
- 5. Load the FT coupons at a rate such that crack extension occurs within ± 20% of the time to max load of the tension coupons
- 6. Perform compliance CT test, reach same load within ± 20% of time of tension coupons
- 7. If any coupons fell outside the time, they were invalidated
- 8. Perform calculations and numerical checks to confirm validity of data

Tension Test Procedure

Test Procedure

- 1. Pre-crack the FT coupons
- 2. Perform tension test on tension coupons
- 3. Get time to failure and max load
- 4. Determine yield stress via ASTM E399
- 5. Load the FT coupons at a rate such that crack extension occurs within ± 20% of the time to max load of the tension coupons
- 6. Perform compliance CT test, reach same load within ± 20% of time of tension coupons
- 7. If any coupons fell outside the time, they were invalidated
- 8. Perform calculations and numerical checks to confirm validity of data

Custom Clevis

Test Procedure

- 1. Pre-crack the FT coupons
- 2. Perform tension test on tension coupons
- 3. Get time to failure and max load
- 4. Determine yield stress via ASTM E399
- 5. Load the FT coupons at a rate such that crack extension occurs within ± 20% of the time to max load of the tension coupons
- Perform compliance CT test, reach same load within ± 20% of time of tension coupons
- 7. If any coupons fell outside the time, they were invalidated
- 8. Perform calculations and numerical checks to confirm validity of data

Custom Clevis

Test Procedure

- 1. Pre-crack the FT coupons
- 2. Perform tension test on tension coupons
- 3. Get time to failure and max load
- 4. Determine yield stress via ASTM E399
- 5. Load the FT coupons at a rate such that crack extension occurs within ± 20% of the time to max load of the tension coupons
- Perform compliance CT test, reach same load within ± 20% of time of tension coupons
- 7. If any coupons fell outside the time, they were invalidated
- 8. Perform calculations and numerical checks to confirm validity of data

Tension Results

D638 Tension Testing

Tension Results

riela Strength (MPa)							
Raster	Orientation	Average	Std Dev				
0/45/90	Flat (X)	63.1	1.3				
45/-45	Flat (X)	62.3	0.4				
60/-60	Flat (X)	59.7	2.0				
0/90	Flat (X)	54.9	1.5				
45/-45	Upright (Z)	54.6	2.4				

*n=3

- ASTM D638 Type 1 tensile coupons
- Testing followed ASTM standard requirements
- Differences in raster orientation and build orientation impacted yield strength

Preliminary Results

$$K_{I_c} = 4.46 \ MPa/m^2$$

Preliminary Results

Invalid Test

Preliminary Results

$$K_{I_c} = 2.59 \ \frac{MPa}{m^2}$$

UDRI Proprietar

Evaluation of Test Method Suitability

- Originally tried to get the crack using a scraper with a plastic handle but that broke from the hammer, switched to one with a metal tang through the handle
- Before we fixed the crack issue, there was too much yielding in the parts, invalidating the max load according to the spec

Recommendations

Lessons learned

- Getting the proper natural crack before testing was important
- Dial in the loading rate to get the proper time to crack
- Print more coupons
- The extras allow you to dial in the loading rate
- Adjust testing rate outside of ASTM D638 requirements

Continuing Work

- Continuing testing to complete matrix
 - Making modifications as needed
 - Repeat any testing with optimized test conditions
- Double lap shear testing
- Repair design development
- Demonstration/Validation of repair concepts

Questions?

UDRI Proprietary -

Measurement Technique

• An optical comparator was used to get the measurement of the W for all the specimens

Measurement Technique

 The measurement of a was easier to get after breaking the coupons. So, it was measured with calipers.

$$x - W = z$$

y - z = a

References

ASTM International. *Standard Test Method for Tensile Properties of Plastics*; ASTM D638-22; West Conshohocken, PA, 2022. DOI: 10.1520/D0638-22

ASTM International. *Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials*; ASTM D638-22; West Conshohocken, PA, 2022. DOI: 10.1520/D5045-14R22.

ASTM International. *Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials*; ASTM E399-23; West Conshohocken, PA, 2023. DOI: 10.1520/E0399-23

