

Hiruni Perera (Presenter)

Materials Engineer Dr. Justin Massey Supervisory Materials Engineer NAVAIR- FRCSW Prof. Hyonny Kim University of California San Diego APRIL 2-4, 2024 JCAMS 2024 | NORFOLK, VA

SOUTHWEST

- Distribution Statement A: Approved for public release. Distribution is unlimited.
- Release number: 24-0010

Problem Statement

CUI

FLEET READINESS CENTER

- Delamination is a common failure on polymer matrix composites (PMC)
 - Sources include manufacturing defects and inservice or maintenance damage
- Resin injection is a standard repair technique but NOT considered strengthrestoring
 - Difficulty in characterizing and removing contaminants in small cracks
 - Multiple drilling attempts and heat application required to inject currently approved resins
- Benefit of resin injection: faster and cheaper compared to patch repairs

Injection Repair

Patch Repair

Problem Statement, Cont.

- Per aircraft maintenance and repair manuals, resin injection is used to repair delaminated composite materials using laminating resins Henkel EA9396 and EA956.
- Filling small cracks (< 1 micron) is difficult due to the resins' viscosity (~3500 cP at 77°F)
 - Delaminated sections are rarely filled completely without heat application and multiple attempts
 - Current injection repair process are considered non-structural due to repetitive drilling and incomplete crack fill
 - Previous research diluted EA9396 with 10% and 20% w/w acetone to achieve lower viscosity at the expense of increased porosity [1]
- FRCSW is investigating epoxies that:
 - (1) initially meet a viscosity of <650 cP, recommended by A.J. Russell (Canadian Defense Research Establishment Pacific)
 [2]
 - (2) comply with the in-service temperature and humidity conditions of multiple aircraft platforms.

- Milestone 1: Identify potential resin candidates that satisfy the following criteria:
 - Viscosity < 650 cP
 - Tg (glass transition temperature) > 250°F
 - Pot life is ≥ 20 minutes
- Milestone 2: Characterize resin mechanical and chemical properties for convergence upon

2-3 resins

- Milestone 3: Test Mode II interlaminar fracture toughness of the selected epoxies to compare to baseline unidirectional laminate values
- Milestone 4: Inject resins into laboratory-impacted coupons. Perform NDI and mechanical testing to converge upon final 1-2 resins that will be used for multiple platforms in the field

Milestone 1: Epoxy Identification

Potential Epoxy Candidates

CUI

Table 1: Potential Off-the-Shelf Products

Product Name	Manufacturer	Initial Viscosity at 25°C/ 77°F (cP), Brookfield	Service Temperature/Tg (°F)	Service Temperature/Tg (Elevated Temperature- Wet)	Pot Life (hrs)
Masterbond SUP112 (Supreme 112)	Master Bond	50-200	550	N/A	48-72
Araldite LY 5052-1/ Aradur 5052 Hardener	Huntsman	600-700	248-273 (Tg)	N/A	4
Kaneka SR6400	Kaneka	80	262 (Tg)	199 (Tg)	0.33 (20 mins)
Kaneka IR6030Kaneka370		370	275 (Tg)	N/A	1.5

Table 2: Potential EA9396 Dilutions

Solvent	Quantity (% w/w)
	10
IVIIBK	20
Acetone	15

- Potential resin candidates need to satisfy the following criteria
 - Viscosity < 650 cP
 - Tg (glass transition temperature) > 250°F
 - Pot life is ≥ 20 minutes
 - Procurable (no excessive lead times or DOD-specific difficulties)
- Diluted EA9396 included for consideration due to all materials being readily available

Milestone 2: Epoxy Characterization

Viscometer Testing

CUI

Brookfield Viscosities of Various Epoxies

• Evaluation of epoxy viscosity conducted with Brookfield Viscometer

- Reading were taken over the span of 10 minutes after time of mix
- Ambient temperature at 21°C versus the 25°C condition stated in TDS
 - Results are more viscous than values stated in datasheets, also more conservative and representative of actual conditions
- <u>Results</u>
 - SR6400 and EA9396-15% acetone display the lowest viscosity (200 300 cP)
 - Supreme 112 and Araldite well above the 650 cP of AJ Russell's epoxy (red line); IR6030 at the threshold
 - Not pictured: initial viscosity for 10% MIBK is 833.3 cP

Single Lap Shear

CUI

Low Viscosity Resin Single Lap Shear Strength

Conditioned, Elevated Temperature

Dry, Room Temperature

	EA9396	SR6400	IR6030	EA9396-15% w/w Acetone	Supreme 112	Araldite 5052
% change from original mass to final mass (TC)	1.74	1.52	0.57	-1.32	0.27	0.46
Dry, RT shear strength (psi)	3186.7	1993.4	2317.5	3473.6	2369.2	2971.9
Conditioned, elevated temp shear strength (psi)	1829.3	1839.7	1916.8	451.2	1871.4	1291.8
% Difference From Average Dry RT Results	-42.6	-7.7	-17.3	-87.0	-21.0	-55.7

 Conducted single lap shear (SLS) testing for dry and heat and humidity-conditioned samples

- Conditioned samples were in humidity cabinet at 140°F and 90% RH until moisture equilibrium achieved
 - Samples soaked for 10 minutes at 250°F immediately prior to testing
- <u>Results</u>
 - EA9396 variants and Araldite 5052 demonstrated the largest RT SLS and the most extreme change with hotwet samples
 - Kaneka resins displayed the lowest deviation between the hot-wet and dry SLS
 - All coupons failed cohesively

DSC Testing

CUI

EA9396-15% Acetone- uncured sample example

Ероху	Degree of Cure (%)	
EA9396	92.1-94.9	
EA9396 w/ 15% Acetone	95.9	
SUP112	94.7	
IR6030	95.2	
Araldite 5052	96.6	

DSC sample containers for EA9396-15% acetone (left) and EA9396 (right) post testing

- Using DSC to determine the degree of cure per the TDS-recommended cure cycles
 - Heating rate at 20°C/min
- Samples of known mass are heated and changes in heat capacity are tracked as a function of time
- Residual exotherm of cured and uncured samples are compared to get degree of cure
- Volatility of EA9396 diluted with acetone noted in epoxy egress from DSC container

10% MIBK EA9396 Resin Puck

Purpose: characterize the bubble generation from diluting EA9396 with different solvents

- Excess bubbles could become trapped in small cracks from delamination

0.010in

Cure 10% and 20% MIBK after 24 hr set time at room temp in containers with lid closed to simulate "worst-case" (arduous path for resins to outgas)

20% MIBK, x 20

magnification

- Pucks" cut in half; cross-section polished and examined under microscope

Results

10% MIBK, x100

- 20% MIBK showed surface discoloration post cure and large voids at surface - Solvent concentration is rejected as a viable option
- 10% MIBK puck shows very sporadic voids- fairly homogeneous surface ٠
- MIBK as a diluent was eliminated due to volatility and 10% w/w only reduced viscosity • to 833 cP

0.0501

Porosity Studies-All Potential Epoxies

Ероху	Average Areal Porosity (%)
EA9396	8.32
EA9396 w/ 15% Acetone	6.61
SR6400	0.22
IR6030	1.42
SUP112	2.80
Araldite 5052	2.03

- Used Keyence VHX-7000 digital microscope to analyze porosity generated from hand-mixing and curing epoxies
 - Areal porosity calculated using area of bubbles (red) with respect to specified area of coupon
- Micrographs taken with x20 magnification to yield more global view of coupon (i.e. EA9396 shown below) Notes
 - EA9396 variants showed the largest areal porosity
 - Mixing Parts A and B components that are very different in viscosity requires more motion for homogenous solution

FLEET READINESS CENTER

 High viscosity of Part A also seems to result in large amount of bubbles induced Observed comparatively low porosity in remaining epoxies

COMMANDER FLEET READINESS CENTER

DMA Testing

Ероху	Average Tg, E' (°C/°F)	Average Tg, E" (°C/°F)	Average Tg, tan δ (°C/°F)	
Masterbond Supreme 112	107.2/224.96	111.4/232.5	131.9/269.4	
Kaneka SR6400	125.8/258.5	132.5/270.6	156.9/314.4	
Kaneka IR6030	126.1/256.0	134.5/270.0	145.0/293.0	
EA9396-15% Acetone	74.7/166.5	84.2/182.6	143.1/289.6	
EA9396	94.8/202.6	107.4/225.3	166.1/331.0	
Araldite 113.8/236.7 5052		122.2/252.0	131.3/268.3	

- Stress applied to heated sample in 3-pt bend configuration ٠
- Material response is measured; loss in elasticity is correlated to Tg .
- Test parameters and results interpretation dictated by ASTM 7028
- **3** samples were tested per epoxy
- Results
 - Both Kaneka resins exhibit average storage modulus Tg that is larger than expected Super Hornet service temperature (250 ° F) All epoxies have comparatively larger Tg versus the currently-used EA9396 ٠
 - ٠

Decision Matrix Scoring Criteria

CUI

Score Rating	Single Lap Shear Strength, Dry and RT (psi)	Single Lap Shear Strength, Elevated Temp (psi)	Viscosity (cP)	Tg, E' (°F)	Porosity (% areal porosity)	Pot Life (hrs)	Cost/qt. kit (\$)	Procurement (months from order placement)
1	<2000	<1750	>700	<220	>5	<0.5	>1000	>2
2	2000-3000	1750-2000	300-700	220- 250	3-5	0.5-1.5	500-1000	1-2
3	>3000	>2000	<300	>250	<3	>1.5	0-500	<1

- Created a decision matrix (outlined on next slide) to converge upon 1-2 candidate epoxies to continue to evaluation process (repair strength restoration)
- Categories that epoxies' were evaluated upon outlined in table above
 - Epoxies were evaluated relative to each other- cut-off for each "score" reflects this
 - Epoxies with the largest total "score" will be used for further evaluation with ENF and CAI

FLEET READINESS CENTER

Decision Matrix

	Category Weights (Multiplier)	EA9396	SUP112	SR6400	IR6030	EA9396-15% Acetone	Araldite 5052
Single Lap Shear Strength, Dry	0.1	3	2	1	2	3	2
Single Lap Shear Strength, Hot-Wet*	0.1	2	2	2	2	1	2
Viscosity	0.2	1	1	3	2	3	1
Tg	0.2	1	2	3	3	1	3
Porosity Generation	0.15	1	3	3	3	1	2
Pot Life	0.05	3	1	1	3	3	2
Cost	0.1	3	1	2	3	3	3
Procurement	0.1	3	2	3	3	3	1
Total	1	1.80	1.80	2.80	2.60	2.10	2.00

Milestone 3: Fracture Toughness Testing (In Progress)/ Hot-Wet Tg Testing

End-Notched Flexure (ENF) Test

CUI

FIG. 1 ENF Test Fixture and Specimen Nomenclature

- IM7/977-3 panels created with PTFE insert to simulate delamination
- Coupons are loaded under Mode II shear to propagate crack and measure fracture load
 - Fracture toughness is calculated as function of fracture load and geometric effects

FLEET READINESS CENTER

Cleaning and Resin Injection Process

- Small cracks within delaminated components can be filled with common contaminants (hydraulic fluid, jet fuel, etc.)
 - Contaminants would compromise bonding of injected resin to c/ep coupon
- ENF coupons were injected with hydraulic fluid to simulate worst-case scenario
- Cleaning process involving acetone flush followed by nitrogen purge and atmospheric plasma surface treatment developed to reduce contaminant volume [2]
 - Plasma treatment done with Surfx Atomflo 500L

OMMANDER ELEET READINESS CEN

- Reduction of HF elements were tracked using Hiden Quantitative Gas Analyzer (mass spectrometer)
- ~15 mL repair resin injected into coupon immediately post cleaning

Plasma Cleaning Process with QGA

LEET READINESS CENTER

- Pulse-echo ultrasonic scans with 10 MHz transducer and water as couplant ٠
- Edges of repair region tend to have pockets of under filled areas or voids (white boxes) ٠
- Larger viscosity of IR6030 yields more effort in injection and filling of cracks ٠

Kaneka SR6400 ~250 cP

Kaneka IR6030 ~650 cP

COMMANDER FLEET READINESS CENTER

Work in progress

COMMANDER FLEET READINESS CENTERS

FLEET READINESS CENTER

Elevated Temperature-Wet Tg

CUI

	Tg (E', °C/°F)	Tg (E'', °C/°F)	Tg (tan δ,°C/°F)
IR6030	111.4/232.5	125.8/258.4	143.7/290.7
SR6400	83.8/182.8	111.6/232.9	158.8/317.8
EA9396	76.1/169.0	94.0/201.2	156.0/312.8

Average Tg from DMA Tan δ Curves

Elevated Temperature

Elevated Temperature

Room Temperature

Room Temperature

FLEET READINESS CENTER SOUTHWEST

Path Forward

CUI

- Milestone 3: Fracture Toughness Testing
 - Continue ENF testing to determine repaired coupons' fracture toughness
 - Analyze fracture surfaces to discern failure modes
 - Develop elevated-temperature test setup
- Milestone 4: NDI, Mechanical Testing of Resin-Injected Impacted Coupons
 - Inject repair resins into laboratory-impacted coupons
 - Perform pulse-echo UT to determine percentage fill
 - Compression-After-Impact (CAI) testing to be performed at PAX to determine strength restoration from repair
 - Converge upon the repair resin of choice

Implementation

- Present results to platform FSTs
- Execute additional testing and/or perform demonstration on actual component as identified by FST

[1] Russell, A.J. and Bowers, C.P., "Resin Requirements for Successful Repair of Delaminations", Proceedings of the 36th SAMPE Symposium, 15-18 April 1991, San Diego, CA.

[2] Massey, J. T. (2023). Novel Quantitative Composite Delamination Injection Repair Procedure and Characterization for Strength Restoration. UC San Diego. ProQuest ID: Massey_ucsd_0033D_22445. Merritt ID: ark:/13030/m5m99dk2. Retrieved from https://escholarship.org/uc/item/17n8b3vz

[3] ASTM Standard D7905, 2019, "Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites," ASTM International, West Conshohocken, PA, 2023

