Novel Room Temperature Filler for Honeycomb Repairs

2024 JCAMS Annual Meeting

Elizabeth Andrew

TRANSFORMING THE MATERIAL CHALLENGES OF TODAY INTO THE SOLUTIONS OF TOMORROW

COMPANY PROFILE

Materials Sciences LLC (MSC) is a small business headquartered in a 25,000 ft² combined engineering, laboratory, and prototyping facility in Southeastern PA

- 15,000ft² advanced textile production facility and a 30,000ft² composite manufacturing facility in Greenville, SC
- 12,000ft² engineering and manufacturing facility in Huntsville, AL
- Large scale composites production capability in Gulfport, MS via parent organization Seemann Composites LLC

MATERIAL CHARACTERIZATION

- Test planning, specimen design, data reduction and analysis, material qualification
- Standard coupon (e.g. ASTM, SACMA) and large-scale specialty element/component testing
- Static and fatigue testing Servohydraulic and electro-mechanical
- Dynamic-modal analysis, DMA, creep, random vibration, shock, system identification
- Environmental conditioning
- Dimensional analysis/3D inspection
- Non-destructive testing

DESIGN AND ANALYSIS

- Computer aided design and solid modeling software:
 - (RHINO, SolidWorks)
- Commercial and in-house finite element programs
 - (ABAQUS, LS-DYNA, ANSYS, FEMAP)
- Proprietary materials analysis and design software
- Topology optimization for additive manufacturing

PROTOTYPE & PRODUCTION MANUFACTURING

- Fabrication of fiber reinforced composite parts
- Out-of-Autoclave (OoA) manufacturing via resin transfer molding (RTM), resin film infusion (RFI)
- Compression molding
- Injection molding
- Textile production

PRODUCT DEVELOPMENT AREAS

MSC has led design, analysis, manufacturing and testing of advanced composite materials and structures for a broad range of product applications for both government and corporate clients. These have included aviation and missile systems, marine and transportation systems, ground vehicle, unmanned systems and high-performance sporting goods.

- AVIATION AND MISSILE SYSTEMS
- MARINE AND TRANSPORTATION SYSTEMS
- **PRODUCT TEXTILES AND COMPOSITE PARTS**

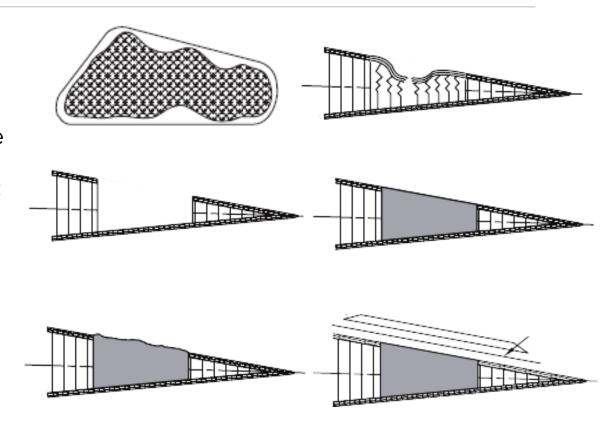
COMPOSITE DAMAGE MODELS

- MAT 161/162: Progressive failure model for LS-DYNA and ANSYS
- NDBILIN: Stress-based failure modeling for ABAQUS
- DDSHM: Fractured-based failure modeling for ABAQUS

BACKGROUND

Opportunity

There are two general repair types for sandwich structures: core fill and honeycomb replacement. For large repairs, replacing the honeycomb is currently the only option due to the weight and structural performance attributes associated with state-of-the-art (SOTA) materials. The Navy is seeking a novel, lightweight, fast-curing filler material with enhanced mechanical properties that will facilitate larger potting repairs.

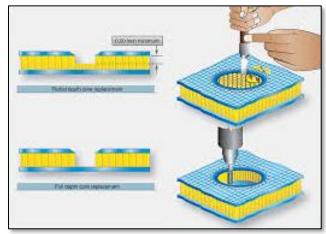

Program Details

Customer: NAVAIR

Current Funding: Phase II SBIR

□ Topic #: N221-006

 \square PoP: 7/26/23 \rightarrow 8/4/25



Typical steps to a core fill repair in a sandwich composite

NAVAIR PHII SBIR: PROGRAM GOAL

- Phase II Objectives: Demonstrate high-quality repairs that increase operational efficiency
 - Optimized Cure Cycle
 - Increased Glass Transition Temperature (Tg)
 - □ Reduced Density
- **Approach:** Formulate blended epoxy system(s) with tuned hardener and filler package(s) to achieve desired cure profile, density, and mechanical performance.
- Anticipated Phase II Results: An innovative low density honeycomb filler that will be useful in a wide range of environments
 - □ Retains compressive strength at elevated temperatures
 - Cures rapidly even at very low temperatures
 - Agnostic to application method

RESIN DEVELOPMENT

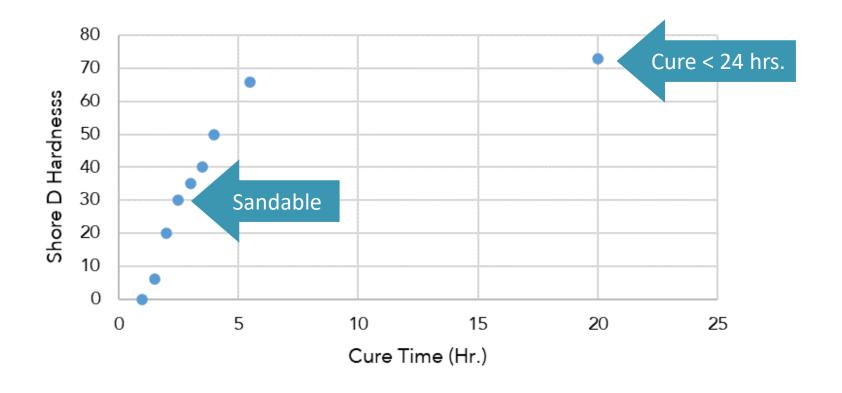
- Develop base epoxy blend and cure package to achieve desired pot life, exotherm temperature, and cure time
- System Optimization
 - Catalyst Concentration for reaction rate control
 - □ Fire Retardant package
 - Filler for density reduction
 - Elevated temperature properties
- Additional Focus points
 - Handling characteristics such as viscosity and cling
 - Component shelf life

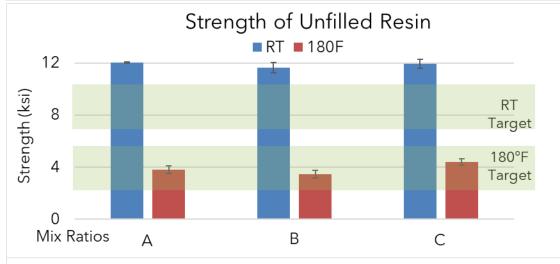
Processing Objectives

- 8 hr. cure < 70°F (21°C)
- Pot Life > 15 minutes
- 1 hour cure to sanding at 70°F (21°C)
- Exotherm < 200°F (93.3°C)

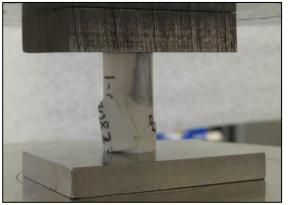
Material Property Targets

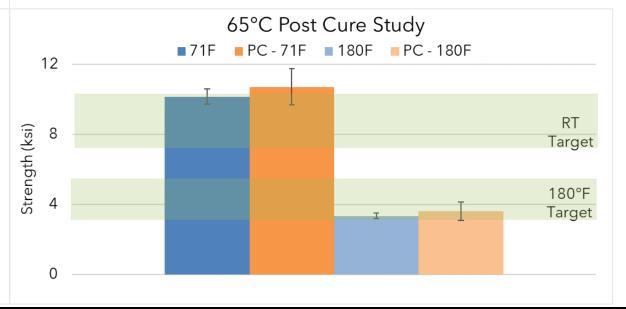
- Compression Strength 7-10 ksi
- Density 0.4-0.8 g/cc
- Surface chemistry
- Processability
- 50% property retention at 180 °F

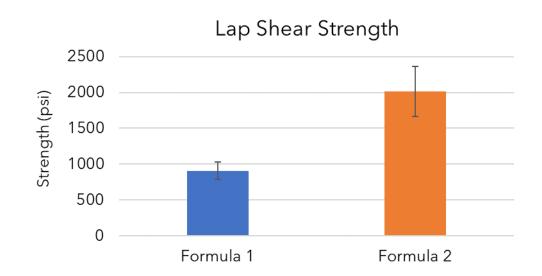


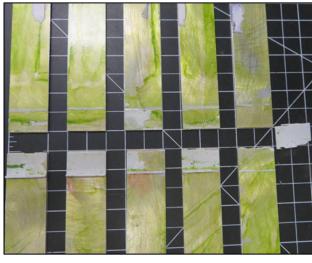

EXTENT OF CURE

- Shore D is an indicator of the extent of cure
- Highest Shore D value taken at each point



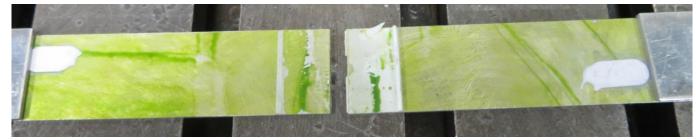

COMPRESSION TESTING





LAP SHEAR TESTING

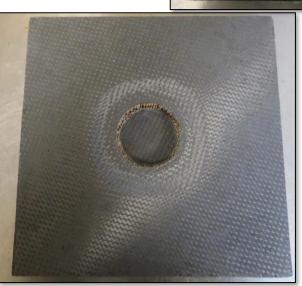
- Aluminum used as adherend
- Prepared according to ASTM D1002
 - □ Single lap configuration



Formula 1

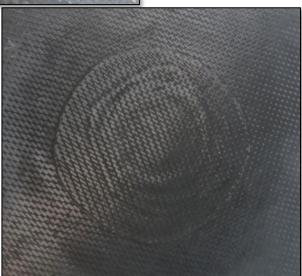
Formula 2

SUPPLEMENTAL CAPABILITY: FR PERFORMANCE


- For large repairs as well as in specific locations, fire retardance is a desirable performance attribute.
 - ☐ Filled system is self extinguishing
 - □ Vertical burn out occurred in 4 seconds
 - No Drips
 - Minimal deformation
 - Very hard char formation
- Corresponds to UL94 Flammability rating of V-0

FOCUS POINT: REPAIR DEMONSTRATION

- Repair shows large efficiency improvement.
 - Rapid application of potting compound
 - Minimal delay to sanding
 - No runaway exothermic reaction
- TRL-4 achieved

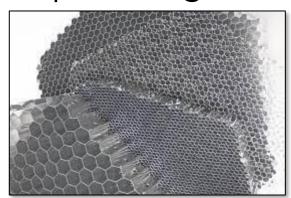


PILOT PRODUCTION

- Ross double planetary mixer
 - □ 2 gallon capacity
 - Fully mixed resin or hardener package
 - Uniform incorporation of fillers

SUMMARY

MSC Solution	Advantages Over Legacy*
Cured in under 24 hours	Cost competitive with potential for savings
Cures as low as 32°F	
Maximum Exothermic Temperature of 31C	40% weight savings
Pot life of 30 minutes	50% (4hr) reduction in time to sand
Density = 0.72 g/cc	80% (4 day) reduction in time to full cure
Compressive strength greater than 8 ksi	-
Lap Shear above 2 ksi	-
UL-94 V0 Fire performance	No fire retardancy


*Loctite EA 9321 AERO



FUTURE WORK

- Higher Temperature Post Curing
- Further Density Reduction
- Evaluation adhesion to other relevant substrates
 - Aramid
 - Aluminum
 - □ Polymer foams
- Scale up to 40 gallon mix planned for Q4 CY24

ACKNOWLEDGEMENTS

- The authors would like to acknowledge the generous support from the "Room-Temperature Filler for Honeycomb Repairs" Prime Contract No. N68335-23-C-0523
 - Eva (Kate) Thorn, Christopher Rethmel, Robert Thompson
 - NAVAIR Naval Air Warfare Center Aircraft Division

- Team Members
 - □ Luke Colone Chief Technical Officer
 - Elizabeth Andrew Engineering Manager
 - Dominic Mirto Testing SME
 - □ Clifton Garrett Composite Technician

